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EFFECT OF TEMPERATURE SENSITIVITY

AND INELASTIC BEHAVIOR OF PHASE MATERIALS

ON THE BEARING CAPACITY OF PLANE STRUCTURES

WITH UNIFORMLY STRESSED REINFORCEMENT

UDC 539.214:539.3Yu. V. Nemirovskii and A. P. Yankovskii

An inelastic problem of uniformly stressed reinforcement of plane temperature-sensitive composite
structures is formulated. Analytical solutions are obtained for the thermoelastic and inelastic cases.
On the basis of these solutions, it is shown that the bearing capacity for inelastic projects can be
increased severalfold as compared to thermoelastic projects, and reinforcement can be substantially
saved in the inelastic case under fixed loading. Despite the worsening of strength characteristics of
the composition phases, the bearing capacity of the structure remains almost unchanged upon heating
in the inelastic case and can even increase in the thermoelastic case.

Key words: composites, uniformly stressed reinforcement, temperature sensitivity, termoelastic-
ity, thermoplasticity, uniform deformation.

One of the strength criteria in rational design of composite structures under static loading is the uniform
stress of fibers along their trajectories, which allows one to use the bearing capacity of high-strength reinforcement
most completely and create reliable structures even with a low strength of the binder. Many papers deal with
uniformly stressed reinforcement or rational reinforcement (RR) (see, e.g., [1–8]). Until now, however, the study of
the RR problem either employed the fiber (grid) model of the reinforced layer [7, 8], which ignores the mechanical
behavior of the binder and, hence, the effect of the thermal or radiative action on the structure [5], or the behavior of
all phases of the composition was assumed to be linearly elastic, i.e., the real behavior of phase materials beyond the
yield point was neglected. The efficiency of using the bearing capacity of real fibers was not estimated in considering
the RR problem in the elastic formulation. In addition, it is known that the physicomechanical properties of many
materials used to prepare fiber compositions change significantly under an intense thermal action (in particular,
their strength decreases or increases) [9–12].

The objective of the present study is to examine the effect of temperature sensitivity and inelastic behavior
of phase materials of the composition on the bearing capacity of structures in RR.

1. System of Resolving Equations and Boundary Conditions. A complete closed system of resolving
equations of the RR problem, which describes, in the Cartesian coordinate system x1Ox2, the behavior of plane
thermoelastic and thermoplastic structures statically loaded in their planes and reinforced by two families of uni-
formly stressed fibers (the binder and fiber materials are assumed to be isotropic, and the behavior of the binder is
described by the deformation theory of plasticity [13]), includes the equations of equilibrium

(−1)i
∑
k

σkωklkj∂k(ψk) +Bi(u,ω, ε0, θ) = −(1− Ω)Fi −
∑
k

ωkFki

(j = 3− i, i = 1, 2),
(1.1)
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written in displacements [14], the conditions of constant cross sections of the fibers

(ωk cosψk),1 + (ωk sinψk),2 = 0 (k = 1, 2), (1.2)

the conditions of uniformly stressed reinforcement

σk = fk(εk, θ) = const,
(1.3)

∂k(u1) cosψk + ∂k(u2) sinψk − αk(θ)θ = εk(θ) = f−1
k (σk, θ) (k = 1, 2),

and the equation of plane stationary heat-conduction problem

(Λ11(θ)θ,1 + Λ12(θ)θ,2),1 + (Λ21(θ)θ,1 + Λ22(θ)θ,2),2 + 2µ(θ)(θ∞ − θ)/h

= −(1− Ω)Q−
∑
k

ωkQk, θ = T − T0, θ∞ = T∞ − T0. (1.4)

Here

Bi(u,ω, ε0, θ) = a[g(εu, θ)(ui,i − ε0) + 3K(θ)(ε0 − α(θ)θ)],i + 0.5a[g(εu, θ)(ui,j + uj,i)],j , j = 3− i, i = 1, 2; (1.5)

∂k( · ) = lk1
∂( · )
∂x1

+ lk2
∂( · )
∂x2

, lk1 = cosψk, lk2 = sinψk, k = 1, 2; (1.6)

Ω =
∑
k

ωk, ω = {ω1, ω2}, u = {u1, u2}; (1.7)

Λij(θ) =
1
Ω

∑
k

ωk

{
[Ω(λk(θ)− λ(θ)) + λ(θ)]lkilkj +

(−1)i+j lkslkrλk(θ)λ(θ)
Ω(λ(θ)− λk(θ)) + λk(θ)

}
,

(1.8)

s = 3− i, r = 3− j, i, j = 1, 2;

g(εu, θ) =
2σu(εu, θ)

3εu
, K(θ) =

E(θ)
3(1− 2ν(θ))

, ε0 =
ε11 + ε22 + ε33

3
,

εu = (
√

2/3)
√

(ε11 − ε22)2 + (2ε22 + ε11 − 3ε0)2 + (3ε0 − 2ε11 − ε22)2 + 6ε2
12, (1.9)

ε33 = 3ε0 − ε11 − ε22, εij = (ui,j + uj,i)/2, i, j = 1, 2;

0 < a = const < 1. (1.10)

On one part of the contour Γp, it is possible to set the static boundary conditions in displacements [14]∑
k

σkωk cos2(ψk − β) +Dn(u,ω, ε0, θ) = pn,

∑
k

σkωk sin 2(ψk − β) +Dτ (u,ω, ε0, θ) = 2pτ , (x1, x2) ∈ Γp,
(1.11)

on the other part Γu, one can set the kinematic conditions

ui(Γu) = ui0, i = 1, 2, (1.12)

and on the entire contour Γ = Γp ∪ Γu, it is possible to set the thermal conditions

χ[(Λ11(θ)θ,1 + Λ12(θ)θ,2)n1 + (Λ21(θ)θ,1 + Λ22(θ)θ,2)n2 + q] + γ(θ − θ0) = 0. (1.13)

Here

Dn(u,ω, ε0, θ) = a{g(εu, θ)[u1,1n
2
1 + u2,2n

2
2 + (u1,2 + u2,1)n1n2 − ε0] + 3K(θ)(ε0 − α(θ)θ)},

(1.14)
Dτ (u,ω, ε0, θ) = ag(εu, θ)[2(u2,2 − u1,1)n1n2 + (u1,2 + u2,1)(n2

1 − n2
2)];

n1 = cosβ, n2 = sinβ. (1.15)
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(It is possible to set conditions (1.11) and (1.12) on the entire contour Γ limiting the region G occupied by the
structure in the planform.) On the part of the contour Γk in which the fibers of the kth family enter the structure,
one has to specify the boundary conditions for reinforcement intensities:

ωk(Γk) = ω0k, k = 1, 2. (1.16)

In solving the RR problem in the case of plane strain (ε33 = 0), one should take into account in operators
(1.5) and (1.14) that

ε0 = (ε11 + ε22)/3 = (u1,1 + u2,2)/3, (1.17)

and in the case of the generalized plane stressed state (PSS), system (1.1)–(1.4) should be supplemented by the
equation [14]

g(εu, θ)(2ε0 − u1,1 − u2,2) + 3K(θ)(ε0 − α(θ)θ) = 0, (x1, x2) ∈ G. (1.18)

In addition, in the case of the linearly elastic behavior of the phase materials, the functions g(εu, θ), fk(εk, θ), and
f−1
k (σk, θ) in relations (1.3), (1.5), (1.9), (1.14), (1.18) have the form

g(εu, θ) = E(θ)/(1 + ν(θ)), fk(εk, θ) = Ek(θ)εk, f−1
k (σk, θ) = σk/Ek(θ). (1.19)

The solution of the RR problem should satisfy the physical constraints [3, 4, 14]

0 6 ωk (k = 1, 2), Ω 6 1− a (0 6 a = const < 1) (1.20)

and the strength constraints

σu(εu, θ) 6 σb(θ), −σ−k (θ) 6 σk 6 σ+
k (θ), σb > 0, σ±k > 0, k = 1, 2. (1.21)

In equations and relations (1.1)–(1.21), Fi and Fki are the components of specific volume loads acting on the
binder and reinforcement of the kth family in the directions xi, respectively, ωk and ψk are the intensity and angle
(counted from the direction x1) of reinforcement by fibers of the kth family, σk and εk are the stress and mechanical
strain of the fibers of the kth family (the tension–compression diagram σk ∼ εk can be asymmetric in the general
case; its form depends on temperature and is determined by the function fk), σu and εu are the stress and strain
rates in the binder (the form of the diagram σu ∼ εu can be temperature-dependent), εij and ui are the strain
and displacement components, ν is Poisson’s ratio of the binder, E and Ek are the elasticity moduli of the binder
and reinforcement of the kth family, respectively, a is the intensity of binder interlayers between the elementary
reinforcement layers, α and αk are the coefficients of linear thermal expansion of the binder and reinforcement of
the kth family, λ and λk are the thermal conductivities of the binder and reinforcement of the kth family, θ is
the structure-temperature difference in the working (T ) and initial (T0) states, θ∞ is the temperature difference
between the ambient medium T∞ (on the side of the front surfaces of the structure) and T0, µ is the coefficient of
convective heat exchange between the binder and the ambient medium on the front surfaces of the plate (in the
case of plane deformation, µ = 0), h = const is the plate thickness in the PSS, Q and Qk are the powers of internal
heat sources in the binder and fibers of the kth family, pn and pτ are the normal and tangential contour stresses,
respectively, ui0 are the displacement components specified on the contour Γu, θ0 is the temperature difference of
the structural contour Γ in the working and initial states, q is the heat flux through the side surface of the structure,
χ and γ are the toggle functions, which allow one to set different thermal conditions on Γ, β is the angle that defines
the direction of the external normal to Γ, ω0k are the values of the functions ωk specified on the contour Γk, σb is
the ultimate strength of the binder material, equal, for instance, to the yield point σy or to the time resistance σt,
σ−k and σ+

k are the ultimate strengths of the fibers of the kth family under compression and tension, respectively
(under the action of compressing loads, the fibers can lose stability; therefore, in the general case, σ−k 6= σ+

k );
summation is performed from 1 to 2; the subscript after the comma indicates partial differentiation with respect to
the corresponding variable xi. If the temperature sensitivity of substructural elements of the composition (TSSEC)
is taken into account, their physicomechanical characteristics E, ν, K, α, λ, Ek, αk, λk, µ, σy, σt, and σ±k (k = 1, 2)
depend on the structure temperature θ [9–12]; as a result, the effective thermal conductivities Λij and the functions g
and fk, which characterize the strain diagrams of the phase materials, also depend on θ.

It is shown in [14] that the system of resolving equations (1.1)–(1.4), (1.18) [or (1.17)] is a quasilinear system
of the mixed-composite type [15], which is closed relative to the unknown functions ψk, ωk, uk, θ, and ε0 (k = 1, 2)
and has two complex characteristics generated by the heat-conduction equation (1.4) and two real characteristics,
which coincide with the trajectories of uniformly stressed fibers. The nonlinearity in the problem considered is
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caused by the “structural” nonlinearity (since the RR parameters ψk and ωk are unknown functions) and by the
physical nonlinearity (since the physicomechanical characteristics of the phases of the composition depend on the
temperature θ and, in the case of the inelastic behavior of the phase materials, the functions g(εu, θ) and fk(εk, θ)
are nonlinearly expressed in terms of εu, εk, and θ whose values are determined from the problem solution). This
imposes significant difficulties in the development of methods for solving the RR boundary-value problem.

2. Investigation of the Bearing Capacity of Plane Temperature-Sensitive Structures with
Uniformly Stressed Reinforcement. The theory of the systems of quasilinear equations of the mixed-composite
type has not been adequately developed [15], which does not allow analytical investigation of the properties of the
solutions of the system of resolving equations of the RR problem in the general case. Still, an important class of
solutions of this system can be identified and studied in more detail. Let us analyze the case of uniform deformation
(UD) of a structure in the case where the total strains in the fibers of all families coincide with each other (e.g., the
fibers are made of the same material) and the temperature field is uniform (this is possible for Q = Qk = 0, µ = 0,
and θ(Γ) = θ0 = const [4]):

ε11 = ε22 = εk + αkθ = const, ε12 = 0, ε0 = const, θ = const, k = 1, 2. (2.1)

If conditions (2.1) are satisfied in RR structures, not only the fibers but also the binder are uniformly stressed
[14]:

σb,ii = g(εu, θ)(εii − ε0) + 3K(ε0 − αθ) = const, σb,12 = g(εu, θ)ε12 = 0, i = 1, 2. (2.2)

This allows us to eliminate the undesirable action of shear strains on reinforcement–binder cohesion and significantly
increase crack resistance of the binder-matrix material.

If equalities (2.1) are satisfied, we have the operators Bi = 0 in the equilibrium equations (1.1) and the
operators Dn = const and Dτ = 0 in the static boundary conditions (1.11). For the inelastic behavior of the binder
material, we have

Dn(u,ω, ε0, θ) = a[g(εu, θ)(ε1 + α1θ − ε0) + 3K(ε0 − αθ)] = const,

εu = 2
√

(ε1 + α1θ − ε0)2 = 2|ε1 + α1θ − ε0| = const
(2.3)

in the case of plane deformation, we obtain ε0 = 2(ε1 + α1θ)/3 [see (1.17) and (2.1)], and in the case of PSS, ε0 is
determined from the equation [see (1.9), (1.18), and (2.1)]

3K(ε0 − αθ)− 2g(εu, θ)(ε1 + α1θ − ε0) = 0. (2.4)

In the case of the linearly elastic behavior of the binder material, by virtue of (1.19), we obtain

Dn(u,ω, ε0, θ) = Ea[ε1 + (α1 − α)θ]/(1− ν) = const. (2.5)

Since Bi = 0 (i = 1, 2), Dn = const, and Dτ = 0, the solution of the RR problem in the case of uniform
deformation of the structure is constructed identically for both the elastic and inelastic behavior of the binder
material. [In the case of the inelastic behavior of the binder material, in the case of PSS, one only have to solve
preliminary Eq. (2.4) with respect to ε0 = const]. The thermoelastic RR problem for plane structures under UD
was considered in detail in [6]. All results obtained in [6] can be transposed to the case of the inelastic behavior
of phase materials of the composition. In particular, to satisfy conditions (2.1), only two families of reinforcement
should be inserted into the structure: in the absence of volume loads (Fi = Fki = 0), the RR trajectories are
straight lines, which is convenient for implementation of the corresponding projects. In the case of axisymmetric
loading of annular plates under UD and Fi = Fki = 0 (i, k = 1, 2), the solution of the RR problem can be obtained
in an analytical form [6].

Let us analyze some solutions of the RR problem for plane structures under UD. Let an annular plate be
limited by circumferences of radii r0 and r1 (r0 < r1). Both contours experience uniform normal loads pn,0 = const
and pn,1 = const (pτ,0 = pτ1 = 0), respectively, and there are no volume loads. Both families of fibers are made of
the same material:

σ1 = σ2 = const, ε1 = ε2, E1 = E2, α1 = α2, f1(ε, θ) = f2(ε, θ). (2.6)
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TABLE 1

T ,◦C

MA2 magnesium alloy [11] Boron fibers [10]

E,
GPa

σ0,2,
MPa

σt,
MPa

δ α · 106,
K−1

ν E1,
GPa

σt,1,
MPa

δ1
α1 · 106,

K−1

20 44.5 190 250 0.15 32.4 0.31
416.5 3150 0.002 2.4

150 41.2 98 167 0.22 33.1 0.33

Since the form and loading of the structure possess axial symmetry, it is reasonable to seek an axisymmetric
solution of the RR problem. In the axisymmetric case, in the polar coordinate system (r, ϕ), for Fi = Fki = 0, the
rectilinear RR trajectories are defined by the equations [6]

r sin ψ̃k(r) = Ck = const (k = 1, 2), (2.7)

where ψ̃k = ψk − ϕ are the reinforcement angles counted from the direction of the polar radius r and Ck are
constants to be determined, whose absolute values are equal to the distances from the origin to the reinforcement
trajectory of the kth family. The reinforcement intensity ωk is determined by the expression

rωk(r) cos ψ̃k(r) = r0ω0k cos ψ̃k(r0) = const, ω0k = ωk(r0), k = 1, 2. (2.8)

The constants Ck and ω0k are determined from the static boundary conditions at the points r = r0, r1. In
particular, if we consider only radially symmetric RR structures (ψ̃2 = −ψ̃1, ω1 = ω2, and ω01 = ω02), then, with
allowance for (2.6), we obtain [6]

C2
k = R0(ω01)(P0 − ω01)/[2ω01(P0 − ω01)], k = 1, 2,

2ω01 = [(r2
1P1)2 − (r2

0P0)2][r2
0(r2

1 − r2
0)P0]−1, ω01 = ω02,

(2.9)

where

R0(ω01) = r2
0(2ω01 − P0), Pi = (pn,i −Dn)/σ1, i = 0, 1, (2.10)

and the values of Dn are determined by expressions (2.3) or (2.5).
It follows from relations (2.7), (2.8) that the physical constraints (1.20) are satisfied for the entire structure

if they are satisfied on the inner contour. This requirement yields the inequalities

0 6 [(r2
1P1)2 − (r2

0P0)2][r2
0(r2

1 − r2
0)P0]−1 < 1− a (a = const, a < 1− Ω); (2.11)

0 < cos2 ψ̃1(r0) = P0/(2ω01) 6 1, (2.12)

which determine, with allowance for the dependences of P0 and P1 on pn,0, pn,1, and θ [see (2.10)], in the phase
space (pn,0, pn,1, θ), the region of admissible thermoforce loading of the structure, at which the solution of the RR
problem for annular structures under UD can exist for ω01 = ω02.

By the example of solving the RR problem for an annular plate under UD, the efficiency of using inelastic
projects with uniformly stressed reinforcement can be conveniently shown. We consider an annular plate limited
by circumferences of radii r0 and r1 (r0/r1 = 0.5), which is made of the MA2 magnesium alloy and reinforced by
two families of boron fibers. The physicomechanical characteristics of the phase materials are listed in Table 1.
The distributed volume loads are ignored (Fi = Fki = 0, where i, k = 1, 2), and the uniformly distributed normal
stresses are set at the contours of the structure:

pn,0 = 0.45σt,1p, pn,1 = 0.25σt,1p, pτ,0 = pτ,1 = 0 (2.13)

(σt,1 is the stress equal to the time resistance of boron fibers and p > 0 is a loading parameter). The generalized
PSS is formed in the plate.

First, we consider the case of the elastic behavior of the binder material (boron fibers behave as elastobrittle
ones). We have to evaluate the limiting value of mechanical strain of reinforcement ε1 for which the intensity of
stresses in the binder under UD is equal to the yield point (σy = σ0,2). Equations (1.21) and (2.2) for σb = σy yield
the equation for the limiting value of ε1:

σu =
√
σ2

b,11 − σb,11σb,22 + σ2
b,22 = E|ε1 + (α1 − α)θ|/(1− ν) = σy. (2.14)
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TABLE 2

p T = 20◦C (θ = 0◦C)
T = 150◦C (θ = 130◦C)

Without allowance for TSSEC With allowance for TSSEC

EB IB EB IB EB IB

pmin 0.361 0.368 0.361 0.3685 0.1865 0.193
pmax 0.58 1.31 1.193 1.305 0.945 1.25

Note. The abbreviations EB and IB refer to the elastic and inelastic behavior of the binder, respectively.

We denote the solution of Eq. (2.14) as εy
1:

εy
1 = (1− ν)σy/E + (α− α1)θ for εy

1 + (α1 − α)θ > 0,

εy
1 = −(1− ν)σy/E + (α− α1)θ for εy

1 + (α1 − α)θ < 0.
(2.15)

Since the loading parameter p in (2.13) is assumed to be positive, then, for θ = 0, the value of εy
1 is defined by the

first equality in (2.15).
For the structure temperature in the initial state (T0 = 20◦C and θ = 0◦C), we have εy

1 = 0.39εt,1 (εt,1

= σt,1/E1 is the limiting strain of boron fibers). This means that the stress in uniformly stressed reinforcement
in the case of the elastic behavior of the binder material cannot exceed 39% of the ultimate strength σt,1. Hence,
in the case of the elastic behavior of the binder material, which was the MA2 alloy, the bearing capacity of boron
fibers is used only partially.

Let us consider RR projects, in which the bearing capacity of reinforcement is used to the maximum extent,
i.e., σk = σt,1. In this case, we have εy

1 < εk = εt,1 (k = 1, 2), and plastic strains arise in the binder at θ = 0◦C. To
solve the inelastic RR problem, one has to solve first Eq. (2.4) with respect to ε0; with allowance for the expressions
for g(εu, θ) and εu [see (1.9) and (2.3)], this equation is transformed to

9K(ε0 − αθ)− 2 sign (ε1 + α1θ − ε0)σu(εu, θ) = 0. (2.16)

The solution of Eq. (2.16) depends on the form of the dependence σu(εu, θ) for the binder material. We assume
that the diagram σu ∼ εu has a sector with linear reinforcement. Then, the dependence σu(εu, θ) is determined by
the relations [13]

σu(εu, θ) = Eu(θ)εu for 0 6 εu 6 εu,y(θ),
σu(εu, θ) = σy(θ) + Eu,y(θ)(εu − εu,y(θ)) for εu,y(θ) 6 εu 6 εu,t(θ),

(2.17)

where
Eu = 1.5E/(1 + ν), εu,y = 2(1 + ν)σy/(3E), εu,t = δ + 2(1 + ν)σt/(3E),

Eu,y = E(σt − σy)/[Eδ + 2(1 + ν)(σt − σy)/3].
(2.18)

Substituting the second relation of (2.17) into (2.16) and taking into account the expression for εu (2.3)
and (2.18), we obtain

9K(ε0 − αθ)− 2 sign (ε1 + α1θ − ε0)(σy − Eu,yεu,y)− 4Eu,y(ε1 + α1θ − ε0) = 0. (2.19)

Equation (2.19) has two solutions:

ε0 = [9Kαθ + 4Eu,y(ε1 + α1θ)± 2(σy − Eu,yεu,y)]/(9K + 4Eu,y). (2.20)

The choice of the sign in (2.20) depends on the sign of the inequality

εu = ±2(ε1 + α1θ − ε0) > εu,y > 0. (2.21)

The minus and plus signs should be chosen in (2.20) and (2.21) in the case of fiber compression (ε1 < 0) and
extension (ε1 > 0), respectively. [This choice of the solution of Eq. (2.19) remains valid for the composition
considered in the realistic range of temperatures −300◦C 6 θ 6 1000◦C.]

For the value of ε0 known from (2.20) and (2.21), using formulas (2.7)–(2.10), we can determine the axisym-
metric RR structure for an annular plate under UD in the case of the inelastic behavior of the binder material.

Based on the above-described scheme, calculations were performed for the elastic and inelastic behavior of
the binder material. It was assumed that the stressed state in the binder reached the yield point (σu = σy) in

420



à b

c d

Fig. 1. RR structures of uniformly deformed annular plates under thermoforce loading in the
absence of the thermal action (a–c) and under heating (d): (a) elastic behavior of the binder
material; (b) inelastic behavior (the solid and dashed lines refer to p = pmax and p = pmin,
respectively); (c, d) elastic and inelastic behavior of the binder material (p = 0.45).

the case of the elastic behavior, and the stresses in the reinforcement reach the time resistance (σ1 = σt,1) in the
case of the inelastic behavior. It turned out that different values of the loading parameter p in (2.13) correspond
to different RR projects in the cases of elastic and inelastic behavior of the binder material. Table 2 shows the
minimum value (pmin) and maximum value (pmax) of the parameter p for which it is possible to obtain the solution
of the RR problem with the above-described features of the stressed state in the phases of the composition. The
values of pmin correspond to degeneration of the reinforcement structure into the radial structure (ψ̃1 = ψ̃2 = 0) [i.e.,
the sign of equality occurs in constraint (2.12)], and the values of pmax correspond to the limiting concentration of
reinforcement on the inner contour r0, i.e., 2ω01 = 1− a [see (2.9) and (2.11)]; we used a = 0.3 in the calculations;
therefore, the limiting value of ω01 is 0.35.

Figure 1a and b shows the RR structures of the annular plate under UD in the case of the elastic and inelastic
behavior of the binder material, respectively, at a temperature T = 20◦C (θ = 0◦C) (the dashed lines indicate the
RR structures corresponding to the minimum values of the loading parameter p = pmin and the solid lines, to the
maximum values p = pmax).

It follows from Table 2 that, for θ = 0◦C, the highest load that can be sustained by the RR structure with
the inelastic behavior of the binder material is 2.26 times that with the elastic behavior. The reason is that the
stress in reinforcement in the elastic project, as was mentioned above, does not exceed 39% of the ultimate strength
σt,1, whereas the corresponding value in the inelastic project is σt,1. In addition, it follows from Table 2 that the
solution of the RR problem can be obtained both in the elastic and inelastic cases for 0.368 6 p 6 0.58 and θ = 0◦C.
In this range of the values of p, it is reasonable to compare the amount of reinforcement used in the elastic and

421



p0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.5

0.1

0.3

0

W*

1 5 3

2, 4

6

Fig. 2. Relative volume of fibers in uniformly deformed plates versus
the loading parameter for T = 20◦C (1, 2) and T = 150◦C (3–6): elastic
behavior of the binder material (curve 1), inelastic behavior (curve 2),
elastic behavior (TSSEC ignored) (curve 3), inelastic behavior (TSSEC
ignored) (curve 4), elastic behavior (TSSEC included) (curve 5), and
inelastic behavior (TSSEC included) (6).

inelastic projects. The relative volume concentration of fibers Ω∗ in the structure is determined by the formula

Ω∗ =
1
SG

∑
k

∫ ∫
G

ωkdx1 dx2 =
2
SG

2π∫
0

r1∫
r0

ωkr dr dϕ, SG = π(r2
1 − r2

0).

Figure 2 shows the dependences Ω∗(p) for elastic and inelastic RR projects for different values of temperature.
Curves 1 and 2 are obtained for T = 20◦C in the elastic and inelastic cases, respectively. A comparison of these
curves in the interval 0.368 6 p 6 0.58 shows that the overall consumption of reinforcement in the elastic RR project
is more than twice greater than that in the inelastic project. Figure 1c shows the RR structure obtained for p = 0.45
and θ = 0◦C. Under such loading, the RR trajectories in the elastic and inelastic projects can be hardly distinguished
visually, and Ω∗ in the elastic project is 2.65 times greater than that in the inelastic project.

It should be noted that pmin > 0 (see Table 2). RR projects can also be obtained, however, for 0 6 p < pmin.
Indeed, in determining pmin in the elastic case, it was assumed that σu = σy; therefore, pmin > 0. If the RR structure
is obtained in the elastic case for a certain value p = p0 within the interval pmin 6 p0 6 pmax, then, “fixing” this
structure and varying p in the range 0 6 p < p0, we obtain the plane problem of the linear theory of elasticity for
an anisotropic medium. Then, the stress-strain state in the phases of the composition also changes proportionally
to p (in particular, the stresses in reinforcement and binder are constant everywhere in G and proportional to p).
Thus, we can also obtain RR projects for 0 6 p < pmin, with σu < σy. Obviously, with p varied in the interval
0 6 p < p0, it is reasonable to use the elastic RR project corresponding to the value p0 = pmin, since this yields the
smallest overall consumption of reinforcement (curve 1 in Fig. 2).

Let us study the influence of the thermal action on the bearing capacity of the structure considered. We
assume that the plate is heated to a temperature T = 150◦C (θ = 130◦C) and TSSEC is ignored, i.e., we perform
calculations for the values of the physicomechanical characteristics of the phases, which are given in the first row of
Table 1. The minimum (pmin) and maximum (pmax) values of the parameter p obtained in this case with the elastic
and inelastic behavior of the binder material are given in the third and fourth columns of Table 2. A comparison of
the values of pmin and pmax in the inelastic case in the absence (T = 20◦C) and presence (T = 150◦C) of the thermal
action shows that the presence of the temperature field without allowance for TSSEC has almost no effect on the
bearing capacity of the RR structure. Vice versa, in the case of the elastic behavior of the binder material, the value
of pmax in the thermoelastic project (T = 150◦C) is 2.06 times higher than the corresponding value in the elastic
case (T = 20◦C), though the values of pmin in these cases are identical. A drastic increase in the bearing capacity
of the thermoelastic RR structure is explained by the more complete use of the bearing capacity of reinforcement.
Indeed, the limiting mechanical strain εy

1 determined by formula (2.15), for θ = 130◦C is εy
1 = 0.905εt,1. This means

that the stresses in reinforcement of the thermoelastic project are 90.5% of the ultimate strength, i.e., are 2.32 times
higher than those in the elastic structure, in which εy

1 = 0.39εt,1.
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The dependences Ω∗(p) in the elastic and inelastic cases for T = 150◦C are plotted in Fig. 2 by curves 3
and 4, respectively, and curve 4 almost coincides with curve 2. Curves 3 and 4 are located closer to each other than
curves 1 and 2 obtained for T = 20◦C. The reason is that the bearing capacity of fibers in the structure is used
more completely in the thermoelastic case (curve 3) than in the elastic case (curve 1).

The neglect of TSSEC in the presence of the thermal action, however, can lead to significantly overestimated
or underestimated calculation results, because the strength characteristics σ0,2 and σt of the MA2 alloy drastically
decrease with increasing temperature, and the bearing capacity of such a material almost vanishes at T ≈ 500◦C
[11] [in particular, at T = 150◦C, the yield point σy = σ0,2 is almost twice as low as that at T = 20◦C, (see
Table 1)]. Therefore, for the case T = 150◦C, it is reasonable to perform an additional calculation with allowance
for TSSEC (physicomechanical characteristics of the phases of the composition for this case are listed in the second
row in Table 1). The resultant limiting values of the loading parameter pmin and pmax are given in the fifth and
sixth columns of Table 2. A comparison of these values in the inelastic case for T = 20◦C and T = 150◦C shows
that, in the presence of the thermal action and allowance for TSSEC, the lower limit of loading pmin decreases by
a factor of 1.91 and the upper limit pmax decreases by 4.6%, i.e., the maximum bearing capacity of the inelastic
structure as a whole remains almost the same as that at the temperature of the structure in the initial state,
despite the drastic decrease in strength characteristics of the binder with increasing temperature. The reason is
that the mechanical characteristics of boron fibers in the temperature range under consideration are independent
of T (see Table 1), and the stresses in reinforcement both at T = 20◦C and T = 150◦C are equal to the ultimate
strength (σ1 = σt,1), whereas the binder is actually responsible for redistribution of loads over elementary fibers
only. Therefore, worsening of mechanical characteristics of the binder with increasing temperature has almost no
effect on the bearing capacity of the structure as a whole.

A comparison of the values of pmin in the elastic (T = 20◦C) and thermoelastic (T = 150◦C) cases shows
that the lower limit of loading decreases by a factor of 1.94 under heating (with allowance for TSSEC). The upper
limit pmax under heating increases by a factor of 1.63. The reason is that the bearing capacity of reinforcement
in the thermoelastic project is used more completely than in the elastic case. Indeed, despite the drastic decrease
in the yield point of the binder σy under heating, the limiting strain in reinforcement εy

1 [see (2.15)] increases and
reached εy

1 = 0.745εt,1 at θ = 130◦C, i.e., the stress in reinforcement is 74.5% of the ultimate strength σt,1 and 1.91
times greater than the corresponding value in the elastic project. [If the structure considered is cooled, the stresses
in reinforcement decrease. Thus, at T = −30◦C (θ = −50◦C) and physicomechanical characteristics given in the
first row of Table 1, the stresses in reinforcement are 19.1% of the ultimate strength; for θ = −98.2◦C, the stresses
in reinforcement of the thermoelastic structure are zero. In the latter case, the bearing capacity of the structure is
determined by the binder properties only.]

The dependences Ω∗(p) in the elastic and inelastic cases for T = 150◦C with allowance for TSSEC are plotted
by curves 5 and 6 in Fig. 2, respectively. These curves are located closer to each other than curves 1 and 2 obtained
at T = 20◦C, since the stresses in reinforcement reach 74.5% of the ultimate strength in the thermoelastic case
(curve 5) and 39% in the elastic case (curve 1), whereas the stresses in reinforcement in inelastic projects are equal
to the time resistance.

It follows from Table 2 and Fig. 2 that the solution of the RR problem can be obtained for T = 150◦C and
0.193 6 p 6 0.945 both for the elastic and inelastic behavior of the binder material with allowance for TSSEC.
Figure 1d shows the reinforcement structure obtained for p = 0.45 and T = 150◦C with allowance for TSSEC.
In this case, the reinforcement trajectories in the thermoelastic and inelastic projects can be hardly distinguished
visually, and the total consumption of reinforcement in the thermoelastic project is higher than that in the inelastic
project by 34.9%.

A comparison of the values of pmin and pmax obtained for T = 150◦C with and without allowance for TSSEC
shows that the neglect of temperature sensitivity leads to a twofold increase in the lowest value of the loading
parameter pmin both for the elastic and inelastic behavior of the binder material; the upper limit pmax increases by
26.2% in the thermoelastic case and by 4.4% in the inelastic case.

Thus, based on the analysis performed, we can conclude that the use of RR structures in the case of the
inelastic behavior of phase materials of the composition sometimes allow a severalfold increase in the bearing
capacity of the plate as compared to the case of the elastic behavior of materials of all phases of the composition.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 02-01-00115).
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